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Abstract

A linkage of order k of a graph G is a subgraph with k components,
each of which is a path. A linkage is vital if it spans all vertices, and no
other linkage connects the same pairs of end vertices. We give a charac-
terization of the graphs with a vital linkage of order 2: they are certain
minors of a family of highly structured graphs.

1 Introduction

Robertson and Seymour [4] defined a linkage in a graph G as a subgraph
in which each component is a path. The order of a linkage is the number
of components. A linkage L of order k is unique if no other collection of
paths connects the same pairs of vertices, it is spanning if V (L) = V (G),
and it is vital if it is both unique and spanning. Graphs with a vital link-
age are well-behaved. For instance, Robertson and Seymour proved the
following:

Theorem 1.1 (Robertson and Seymour [4, Theorem 1.1]). There exists an
integer w, depending only on k, such that every graph with a vital linkage
of order k has tree width at most w.

Note that Robertson and Seymour use the term p-linkage to denote
a linkage with p terminals. Robertson and Seymour’s proof of this the-
orem is surprisingly elaborate, and uses their structural description of
graphs with no large clique-minor. Recently Kawarabayashi and Wollan
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Figure 1: The graph K2,4.

Figure 2: The graphs Ü4 and Ü5.

[2] proved a strengthening of this result. Their shorter proof avoids using
the structure theorem.

Our interest in linkages, in particular those of order 2, stems from
quite a different area of research: matroid theory. Truemper [5] studied
a class of binary matroids that he calls almost regular. His proofs lean
heavily on a class of matroids that are single-element extensions of the
cycle matroids of graphs with a vital linkage of order 2. These matroids
turned up again in the excluded-minor characterization of matroids that
are either binary or ternary, by Mayhew et al. [3].

Truemper proves that an almost regular matroid can be built from one
of two specific matroids by certain∆−Y operations. This is a deep result,
but it does not yield bounds on the branch width of these matroids. In a
forthcoming paper the authors of this paper, together with Chun, will give
an explicit structural description of the class of almost regular matroids
[1]. The main result of this paper will be of use in that project.

To state our main result we need a few more definitions. Fix a graph G
and a spanning linkage L of order k. A path edge is a member of E(L); an
edge in E(G)− E(L) is called a chord if its endpoints lie in a single path,
and a rung edge otherwise. If L is vital, then G cannot have any chords.

A linkage minor of G with respect to a (chordless) linkage L is a minor
H of G such that all path edges in E(G)−E(H) have been contracted, and
all rung edges in E(G)− E(H) have been deleted. If the linkage L is clear
from the context we simply say that H is a linkage minor of G. Moreover,
let G be a graph with a chordless 2-linkage L. If G has a linkage minor
isomorphic to K2,4, such that the terminals of L are mapped to the degree-
2 vertices of K2,4, we say that G has an XX linkage minor (cf. Figure 1).

For each integer n, the graph Ün is the graph with V (Ün) = {v1, . . . , vn}∪
{u1, . . . , un}, and

E(Ün) ={vi vi+1 | i = 1, . . . , n− 1} ∪ {uiui+1 | i = 1, . . . , n− 1}∪
{ui vi | i = 1, . . . , n} ∪ {ui vn+1−i | i = 1, . . . , n}. (1)

We denote by Ln the linkage of Ün consisting of all edges vi vi+1 and uiui+1
for i = 1, . . . , n− 1. In Figure 2 the graphs Ü4 and Ü5 are depicted.

Finally, we say that G is a Truemper graph if G is a linkage minor of Ün
for some n. The main result of this paper is the following:

Theorem 1.2. Let G be a graph. The following statements are equivalent:
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Figure 3: The graph Ü6. The linkage is formed by the two diagonally drawn
paths.

(i) G has a vital linkage of order 2;

(ii) G has a chordless spanning linkage of order 2 with no XX linkage
minor;

(iii) G is a Truemper graph.

Robertson and Seymour [4] commented, without proof, that graphs
with a vital linkage with k ≤ 5 terminal vertices have path width at most
k. A weaker claim is the following:

Corollary 1.3. Let G be a graph with a vital linkage of order 2. Then G has
path width at most 4.

Another consequence of our result is that graphs with a vital linkage
of order 2 embed in the projective plane:

Corollary 1.4. Let G be a graph with a vital linkage of order 2. Then G can
be embedded on a Möbius strip.

Both corollaries can be seen to be true by considering an alternative
depiction of Ü2n, analogous to Figure 3.

2 Proof of Theorem 1.2

We start with a few more definitions. Suppose L is a linkage of order 2
with components P1 and P2, such that the terminal vertices of P1 are s1
and t1, and those of P2 are s2 and t2. We order the vertices on the paths
in a natural way, as follows. If v and w are vertices of Pi , then we say
that v is (strictly) to the left of w if the graph distance from si to v in the
subgraph Pi is (strictly) smaller than the graph distance from si to w. The
notion to the right is defined analogously.

We will frequently use the following elementary observation, whose
proof we omit.

Lemma 2.1. Let G be a graph with a chordless spanning linkage L of order
2. Let P1 and P2 be the components of L, with terminal vertices respectively
s1, t1 and s2, t2. Let H be a linkage minor of G. If v and w are on Pi , and
v is to the left of w, then the vertex corresponding to v in H is to the left of
the vertex corresponding to w in H.
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Figure 4: Detail of the proof of Lemma 2.2.

Without further ado we dive into the proof, which will consist of a
sequence of lemmas. The first deals with the equivalence of the first two
statements in the theorem.

Lemma 2.2. Let G be a graph with a chordless spanning linkage L of order
2. Then L is vital if and only if G has no XX linkage minor with respect to L.

Proof. First we suppose that there exists a graph G with a non-vital chord-
less spanning linkage L of order 2 such that G has no XX linkage minor.
Let P1, P2 be the paths of L, where P1 runs from s1 to t1, and P2 runs
from s2 to t2. Let P ′1, P ′2 be different paths connecting the same pairs of
vertices. Without loss of generality, P ′1 6= P1. But then P ′1 must meet P2,
so P ′2 6= P2. Let e = v1v2 be an edge of P ′1 such that the subpath s1 − v1 of
P ′1 is also a subpath of P1, but e is not an edge of P1. Let f = u2u1 be an
edge of P ′1 such that the subpath u1 − t1 of P ′1 is also a subpath of P2, but
f is not an edge of P2. Similarly, let e′ = v′2v′1 be an edge of P ′2 such that
the subpath s2 − v′2 of P ′2 is also a subpath of P2, but e′ is not an edge of
P2. Let f ′ = u′1u′2 be an edge of P ′2 such that the subpath u′2 − t2 of P ′2 is
also a subpath of P2, but f ′ is not on P2. See Figure 4.

Since P ′1 and P ′2 are vertex-disjoint, v′2 must be strictly to the left of
v2 and u2. For the same reason, v′1 must be strictly between v1 and u1.
Likewise, u′2 must be strictly to the right of v2 and u2, and u′1 must be
strictly between v1 and u1. Now construct a linkage minor H of G, as
follows. Contract all edges on the subpaths s1 − v1, v′1 − u′1, and u1 − t1
of P1, contract all edges on the subpaths s2 − v′2, v2 − u2, and u′2 − t2 of
P2, delete all rung edges but {e, f , e′, f ′}, and contract all but one of the
edges of each series class in the resulting graph. Clearly H is isomorphic
to XX, a contradiction.

Conversely, suppose that G has an XX linkage minor, but that L is
unique. Clearly having a vital linkage is preserved under taking linkage
minors. But XX has two linkages, a contradiction.

Next we show that the third statement of Theorem 1.2 implies the
second.

Lemma 2.3. For all n, Ün has no XX linkage minor with respect to Ln.

Proof. The result holds for n ≤ 2, because then |V (Ün)| < |V (XX)|. Sup-
pose the lemma fails for some n ≥ 3, but is valid for all smaller n. Every
edge of XX is incident with exactly one of the four end vertices of the
paths. Hence all rung edges incident with at least two of the four end
vertices are not in any XX linkage minor. But after deleting those edges
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from Ün the end vertices have degree one, and hence the edges incident
with them will not be in any XX linkage minor. Contracting these four
edges produces Ün−2, a contradiction.

Reversing a path Pi means exchanging the labels of vertices si and t i ,
thereby reversing the order on the vertices of the path.

Lemma 2.4. Let G be a graph, and L a chordless spanning linkage of order
2 of G consisting of paths P1, running from s1 to t1, and P2, running from
s2 to t2. If G has no XX linkage minor, then G is a linkage minor of Ün with
respect to Ln for some integer n, such that L is a contraction of Ln.

Proof. Suppose the statement is false. Let G be a counterexample with
as few edges as possible. If some end vertex of a path, say s1, has degree
one (with e = s1v the only edge), then we can embed G/e in Ün for some
n. Let G′ be obtained from Ün by adding four vertices s′1, t ′1, s′2, t ′2, and
edges s′1v1, s′1s′2, s′1 t ′2, s′2u1, s′2 t ′1, vn t ′1, un t ′2, t ′1 t ′2. Then G′ is isomorphic to
Ün+2, and G′ certainly has G as linkage minor.

Hence we may assume that each end vertex of P1 and P2 has degree
at least two. Suppose no rung edge runs between two of these end ver-
tices. Then it is not hard to see that G has an XX minor, a contradiction.
Therefore some two end vertices must be connected. By reversing paths
as necessary, we may assume there is an edge e = s1s2.

By our assumption, G\e can be embedded in Ün for some n. Again,
let G′ be obtained from Ün by adding four vertices s′1, t ′1, s′2, t ′2, and edges
s′1v1, s′1s′2, s′1 t ′2, s′2u1, s′2 t ′1, vn t ′1, un t ′2, t ′1 t ′2. Then G′ is isomorphic to Ün+2,
and G′ certainly has G as linkage minor, a contradiction.

As an aside, it is possible to prove a stronger version of the previous
lemma. We say a partition (A, B) of the rung edges is valid if the edges in
A are pairwise non-crossing, and the edges in B are pairwise non-crossing
after reversing one of the paths. One can show:

• Each Truemper graph has a valid partition.

• For every valid partition (A, B) of a Truemper graph G, some Ün
has G as linkage minor in such a way that (A, B) extends to a valid
partition of Ün.

Now we have all ingredients of our main result.

Proof of Theorem 1.2. From Lemma 2.2 we learn that (i)⇔(ii). From
Lemma 2.3 we learn that (iii)⇒(ii), and from Lemma 2.4 we conclude
that (ii)⇒(iii).
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